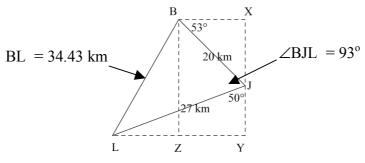
Assessment Schedule - 2008

Mathematics: Solve right-angled triangle problems (90152)


Evidence Statement

	Achievement Criteria	No	Evidence	Code	Judgement	Sufficiency
	Solve right- angled triangle problems.	1	Distance = 28.3 m	A1	Accept answer where the candidates have their calculator in the wrong mode where the answer is reasonable.	Achievement: THREE of A
MENT		2	Angle = $\sin^{-1} \frac{5}{100}$ = 2.8660°	A2	do not allow tan $^{5}/_{100} = 2.862$ Accept, because answers look OK: 3.18 (grad mode used) or 0.05 (radian mode used)	Including at least one A1 and at least one A2.
ACHIEVEMENT		3	diagonal of frame = 2.690 m	A1	do not allow $\sin \frac{5}{100} = 0.05$	Replacement evidence may be
A		4	$\tan 35^{\circ} = \frac{EF}{3.25}$ Length EF = 2.2757 m	A2	Accept, because answers look OK:	found for: A1 (Pythagoras) in Q7, 8 A2 (Trigonometry) In Q5, 6, 7, 8
		1.5 (radian mode u Do not accept 35 x 1.99 unless the transpos	1.99 (grad mode used) 1.5 (radian mode used) Do not accept 35 x tan3.25 = 1.99 unless the transposed values are seen on the diagram.			
					Accept any rounding.	

	Solve problems in practical situations involving right- angled triangles.	5	$\sin 29^\circ = {}^{35}/_x$ or $\cos 61^\circ = {}^{35}/_x$ $x = {}^{35}/_{\sin 29}$ or $x = {}^{35}/_{\cos 61}$ Distance to buoy = 72.2 m Using a ${}^{1}/_2 = \Delta$ from the base:	[A2] M	Accept any rounding. Horizontal distance 63m is A2. Accept, because answer looks OK: 79.6 (grad mode used)	Merit: Achievement PLUS TWO M
			$x = \sqrt{12} = 3.46$ or $x = 2\tan 60^{\circ} = 3.46$	[A1] [A2]		OR THREE M
ACHIEVEMENT WITH MERIT		8 (a)	Using the vertical Δ : $x = \tan^{-1}({}^{40}/_{3.46})$ = 85.05 $\approx 85^{\circ}$ B $x = 3.46$ $= 85.05$ $\approx 85^{\circ}$ $= 85^{\circ}$	M	Allow $\cos^{-1}(\sqrt{12}/40.15) = 84^{\circ}$ for M Do not allow $\tan(40/4) = 84^{\circ}$ for M $\cos^{-1}(\sqrt{12}/40) = 85^{\circ}$ is incorrect Neither grad nor radian mode are acceptable because answers do not look OK:	
ACHIEV			L Z Y In triangle BXJ XJ = $20\sin 53^\circ = 15.973$ BX = $20\cos 53^\circ = 12.036$ In triangle LJY JY = $27\sin 40^\circ = 17.355$ LY = $27\cos 40^\circ = 20.683$	[A2]	A2 could be given for any one of the trig calculations.	
			$XY = XJ + JY = 33.328$ $LZ = LY - BX = 8.647$ $BL = \sqrt{8.647^2 + 33.328^2}$ $= 34.43 \text{ km}$	[A1] M		

NCE	Solve problems in word or 3D situations.	6	3 N		In general, for Excellence, mathematical statements, sensible and correct rounding, and units are expected.	Excellence: Merit Plus one of code
EXCELLENCE			$\tan^{-1}(\frac{3}{2}) = 56.3^{\circ}$ or $\tan^{-1}(\frac{2}{3}) = 33.7^{\circ}$	[A2, M]	Accept, because answer looks OK: 63 (grad mode used). M is awarded for either acute	Е
NT WITH			→ bearing = 326°	Е	Only the correct bearing is E, no consistency.	
ACHIEVEMENT		8 (b)	Angle LBZ = $tan^{-1} \frac{LZ}{BZ}$ = 14.5°	[M]	Accept, because answer looks OK: 333 (grad mode used)	
			Bearing is 14.5° + 180° = 194.5°			

Question 8 (solution done using sine / cosine rule)

To find BL, use cosine rule in $\triangle BJL$ $BL^2 = 20^2 + 27^2 - 2 \times 20 \times 27 \times \cos 93^\circ = 1 \ 185.522...$ $BL = 34.43 \ \text{km}$

To find
$$\angle$$
LBJ, use either cosine rule
$$\angle$$
LBJ = $\cos^{-1}\left(\frac{20^2 + LB^2 - 27^2}{2 \times 20 \times LB}\right)$
or sine rule
$$\angle$$
LBJ = $\sin^{-1}\left(\frac{27 \times \sin 93^o}{LB}\right)$
= 51.5°
$$= 51.5^\circ$$

Required bearing is $143^{\circ} + \angle LBJ = 194.5^{\circ}$

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Solve right-angled triangle problems.	Solve problems in practical situations involving right-angled triangles.	Solve problems in word or 3D situations.
3×A	Achievement plus	Achievement with Merit plus
(including at least one of A1 and one of A2)	$2 \times M$	1×E
	or	
	$3 \times M$	

The following Mathematics-specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may have been used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.